Une glace quantique d’octupoles magnétiques électroniques

Résultat scientifique

Une équipe internationale de physiciennes et de physiciens a mis en évidence par diverses techniques, dont la diffusion des neutrons, un exemple de contrepartie quantique des glaces de spin. Plus précisément, il s’agit d’un état "glacé" particulier, où la distribution octupolaire de la densité électronique joue le rôle des moments magnétiques dans les glaces de spins classiques. L’étude des interactions montre que l’état fondamental est constitué d’une superposition quantique d’états intriqués, confirmant ainsi les prédictions théoriques sur les liquides de spins quantiques.

La recherche de nouveaux états de la matière, allant au-delà de la description classique "à la Landau" suscite un très fort engouement en physique. Dans cette perspective, les travaux théoriques orientent ces recherches vers les systèmes présentant des "ordres topologiques", tels que certains "liquides de spin quantiques" et autres états fortement corrélés, caractérisés en particulier par l’absence de symétrie brisée.

Sur le plan expérimental, c’est la recherche d’une contrepartie quantique des "glaces de spins" qui a retenu l’attention. Ces composés forment un analogue magnétique de la glace d’eau, où le comportement des spins reflète exactement celui du désordre des protons dans H2O.

Une équipe internationale formée de chercheurs du PSI (Suisse), du Stanford Institute for Materials and Energy Science (USA), de l’Institut Néel à Grenoble et du LLB à Saclay a mis en évidence par diverses techniques, dont la diffusion des neutrons, un exemple de cette contrepartie quantique des glaces de spin. Plus précisément, il s’agit d’un état "glacé" particulier, où la distribution octupolaire de la densité électronique joue le rôle des moments magnétiques dans les glaces de spins classiques. L’étude des interactions montre que l’état fondamental est constitué d’une superposition quantique d’états intriqués, confirmant ainsi les prédictions théoriques sur les liquides de spins quantiques.

Petit2020
États "glacés" de la matière. Dans la glace d'eau (à gauche), les quatre atomes d'hydrogène (en bleu) autour de chaque atome d'oxygène (en rouge) sont disposés de manière aléatoire, mais toujours tels que deux d'entre eux sont proches et deux sont éloignés. Dans la glace de spins (au centre), les moments magnétiques dipolaires de matériaux choisis de manière appropriée obéissent à la même règle "2-in-2-out". Dans la glace octupolaire découverte par Sibille et al. [4], les sommets du tétraèdre sont occupés par des octupoles magnétiques (à droite). Leurs degrés de liberté magnétiques, représentés ici par la distribution de charge magnétique correspondante, sont contraints par une règle de glace analogue (les deux directions d’aimantation différentes sont mises en évidence par les flèches de couleur rouge et bleue le long des bords). (Images : Nicolas Gauthier)

 

Lire l'actualité en totalité sur le site du CEA-Iramis

 

Contact

Sylvain Petit
Chercheur au CEA-Saclay, Laboratoire Léon Brillouin
Communication CNRS Physique